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Motivation

FL suffers from data imbalance among clients, causing the performance of the
jointly trained model to decrease [6]. More importantly, depending on the data pro-
vided, clients were shown to vary greatly in terms of their benefit from participa-
tion and contribution to the federation [2, 1], where certain clients contribute more
towards the success of the federation without benefiting to the same extent [1]. Con-
sequently, FL becomes both less fair and reliable when data is imbalanced. Exist-
ing studies require full access to data distributions of clients and measure benefit and
contribution only retrospectively, i.e., after training the federated model [3]. Both of
these constrains severely limit real-world applicability, as (1) granting full access
to clients’ data undermines the benefit of FL and (2) requiring all computations prior
to measurement significantly increases computational costs for involved clients. To
alleviate these drawbacks, in my dissertation, I will introduce Predictive Diagnos-
tics for FL (PDFL), a toolset utilizing federated analytics and secure aggregation to
identify determinants of successful FL and client participation.
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Fig. 1: Process of FL with different PDFL methods applied

Imbalance Measurement
Input: Data held by each client without having to share it with others.
Relying on Secure Aggregation to compute global label distribution V⃗ =
[
∑

j N
1
j , ...,

∑
j N

Q
j ] and number of samples N . Afterwards, each client com-

putes local data imbalances [2], namely:

Label Imbalance LIj =
maxp{Np

j }
minp{Np

j }

Label Distribution Imbalance LDIj = 1− v⃗j·V⃗
||v⃗j||·||V⃗ ||

Quantity Imbalance QIj = Nj/
∑J

l=1Nl
J .

Proposal to also utilize federated clustering to compute feature imbalance [1]:
Feature Imbalance FIj =

|Cj∩Dj|
|Cj|

Output: Measurements of different types of data imbalance.
Predicting Benefit & Contribution

Input: Measurements of global and local data imbalance.
Previous imbalance measurements demonstrate predictive potential for both
client benefit and contribution [2, 1]. In turn, I train classifiers and regressors
to predict whether and to what extent clients benefit from and contribute to FL
[2]. Here, clients’ imbalance measurements serve as feature representation,
e.g., x⃗j = [LIj, LDIj, QIj].
Output: Predictions of client benefit and contribution; binary or numerical.

Data Improvement
Input: Each client’s local dataset.
Applying different approaches for local data sampling, which serve to decrease
data imbalance. Ultimately, this improves the performance and convergence of
FL models. Among others, I apply the following local data sampling strategies:
Undersampling. Random undersampling of the majority classes at each client
to match the size of their respective minority classes.
Oversampling. It focuses on adding minority class samples to match the size
of the majority class using SMOTE.
Hybrid sampling. Hybrid data sampling combines undersampling the majority
classes and oversampling minority classes in order to balance the dataset.
Output: Balanced local dataset that improve FL performance.

Monitoring Training
Input: Train performance (loss) and client contribution.
Relying on data- and algorithm-based approaches to detect changing data im-
balance and concept drift in FL applications with dynamic client participation.
The goal is to identify concept drift as soon as possible.
Output: Information about training performance and concept drift.

Background: Federated Learning

A distributed learning paradigm allowing mutually distrustful clients to jointly train
a machine learning model while maintaining data privacy [4, 5]. A joint model is
trained during several rounds. Each round consists of:

1. A central server sending a global model to all clients
2. Each client fitting the model to their respective data
3. Clients sending local model updates back to the server
4. The central server aggregating all model updates to a new global model

Preliminary Results

Imbalance Measurement

Fig. 2: Effects of Data Imbalance on Benefit [2]

Predicting Benefit & Contribution

Benefit Contribution
Name Acc Std. Dev. Acc Std. Dev

Covtype 0.8928 ±0.0253 0.6005 ±0.0822

Adult 0.6806 ±0.0634 0.6870 ±0.0798

Diabetes 0.7395 ±0.0646 0.7673 ±0.0370

Postures 0.6075 ±0.0456 0.7378 ±0.0866

MNIST 0.7344 ±0.0720 0.6364 ±0.0787

CIFAR10 0.5804 ±0.0610 0.4980 ±0.0445

Mean 0.7059 - 0.6545 -

Tab. 1: Predicting Benefit and Contribution (Classification) [2] Fig. 4: Predicting Client Contribution (Regression)

Data Improvement

Fig. 3: Improvements of FL Performance through Local Data Sampling among three Different Datasets

Next Steps

1. Analyzing and extending data improvement strategies

2. Visualizing measured imbalances, especially to monitor dynamic FL

3. Integration of different methods into a holistic framework

4. Publishing an open-source library for straight-forward deployment
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